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Selaginella was hyperdiverse
already in the Cretaceous

The spike mosses (Selaginella P.Beauv.; c. 750 species) are not only
the most speciose extant genus of lycophytes, but also one of the
largest land plant genera (Jermy, 1990). In addition to the
exceptionally high number of living species it comprises, Selaginella
is an ancient lineage believed to date back to the Carboniferous or
even Devonian, based on fossil evidence (Kenrick & Crane, 1997;
Thomas, 1997; Korall et al., 1999; Taylor et al., 2009) and DNA-
based divergence time estimates (Klaus et al., 2017; Morris et al.,
2018).

Selaginella is notorious for the small morphological differences
seen amongmany species, both extant as well as fossils attributed to
this lineage. Most present-day species are characterised by aniso-
phyllous, flattened shoots with vegetative leaves (trophophylls)
arranged in four rows, that is two dorsal rows of smaller leaves and
two ventral rows of larger leaves. Some 50 extant species possess
monomorphic vegetative leaves. Sporophylls and sporangia typi-
cally occur clustered in the form of tetrastichous (rarely helical)
strobili at branch tips. The sporophylls are uniform in size and
shape in the majority of extant species; however, there are c. 60
extant species in which not only the trophophylls, but also the
sporophylls, are dimorphic. Strobili in most of these latter species
are resupinate, that is characterised by smaller sporophylls in the
same plane as the larger trophophylls.

The relatively undifferentiated gross morphology renders
attempts to assess the morphological evolutionary history of the
genus difficult. Nevertheless, each subgenus is characterised by a
unique combination of morphological characters (Weststrand &
Korall, 2016a,b). The vast majority of extantmembers of the genus
belong to the cosmopolitan subgenus Stachygynandrum (P.Beauv.
exMirb.) Baker (Weststrand&Korall, 2016b), of which there is no
persuasive fossil record to date.

Based on time-calibrated molecular phylogenies, most of the
seven currently recognised extant subgenera within Selaginella
(Weststrand&Korall, 2016b) are suggested to date back to the late
Mesozoic, while the lineage leading to subgenus Selaginella (with
only two extant species, sister to the rest of the genus) probably
originated in the Carboniferous, or even earlier (Weststrand, 2016;
Klaus et al., 2017). The record of selaginellalean fossils from the
Paleozoic andMesozoic, however, is heterogeneous and comprised
largely of impressions and compressions of sterile leafy shoots,
isolated strobili or fertile shoots with strobili (sometimes

containing in situ spores), and dispersed spores (e.g. Ash, 1972;
Thomas, 1997; Wierer, 1997; Bek et al., 2001, 2009; P�seni�cka &
Oplu�stil, 2013; McLoughlin et al., 2014; van Konijnenburg-van
Cittert et al., 2014, 2016), with few forms so well preserved in all
parts that the complete set of structural features necessary for the
safe attribution to a subgenus can be obtained (but see Ash, 1972,
and Thomas, 2005).

Moreover, as no fossils representing the Stachygynandrum clade
are known to date, some 80% of the species in Selaginella have no
calibration point among them, which severely affects the reliability
of the dating of this group. It therefore remains unresolved for how
long in Earth history Selaginella has been a species-rich lineage, and
when exactly (and why) the present-day prevalence of subgenus
Stachygynandrum has evolved.

Selaginella from mid-Cretaceous Burmese amber

It might be expected that the delicate, herbaceous, free-sporing
Selaginella, which abundantly occurs in humid forests, would have
a substantial fossil record in amber (fossil tree resin). However, this
was not the case until very recently.

Amber does not occur continuously in Earth history (Seyfullah
et al., 2018), and only a few Cretaceous and Cenozoic ambers have
preserved plant remains in larger numbers. Kachin amber, the older
variety of the more widely known Burmese amber, originates from
the Albian-Cenomanian (c. 100 million years old (Ma)) of
Myanmar (for additional information on provenance and age,
refer to Supporting Information Notes S1), and presently repre-
sents the most important source of three-dimensionally preserved
younger Mesozoic terrestrial organisms (plants, animals and
microorganisms). More than 1200 species have been formally
described, half of those in the last 3 years (Ross, 2019), including
some 20 taxa of free-sporing land plants such as liverworts, mosses
and ferns (Heden€as et al., 2014; Heinrichs et al., 2018; Regalado
et al., 2019), whichmakes Burmese amber themost likely source for
Cretaceous lycophyte fossils entombed in amber. Recent screening
of several collections of Kachin amber has yielded 14 distinct
morphologies of fertile Selaginella (Fig. 1) preserved in 29 pieces of
amber (for information on handling of the amber, seeMethods S1,
and for repository information, refer to Table S1).

Entombment of the plants in amber has preserved all essential
characteristics of these Selaginella fossils, including: (1) an axial
stele situated in an air-filled (amber-infilled in the fossils) central
canal and connected to the cortical tissue by so-called trabeculae
(Fig. 2a) is a synapomorphy for Selaginellaceae; (2) a ligule (i.e. a
minute, scale-like flap of tissue) located proximally on the adaxial
leaf surface (Fig. 2b) is a characteristic of all extant heterosporous
lycophytes (Isoetaceae Rchb. and Selaginellaceae Willk.); (3)
rhizophores (root-like structures that typically are borne in the
branch dichotomies of aerial shoots, Fig. 2c); and (4) megaspores
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Fig. 1 Diversity of Selaginella from Albian-Cenomanian Burmese amber (Kachin amber) of Myanmar. Gross morphology of the 14 currently available fertile
taxa. Specimens housed in the collections of the Geoscience Centre at the University of G€ottingen (GZG) and the Nanjing Institute of Geology and
Palaeontology, Chinese Academy of Sciences (PB). (a) GZG.BST.22000, (b) GZG.BST.22002, (c) GZG.BST.21999, (d) GZG.BST.21998, (e) GZG.BST.21997,
(f) GZG.BST.21966, (g) GZG.BST.22001, (h) GZG.BST.22006, (i) PB23101, (j) PB23159, (k) GZG.BST.22004, (l) PB23160, (m) GZG.BST.22005,
(n) GZG.BST.22003. Bars, 500 µm.
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and microspores that are comparable in size and shape with the
spores seen in extant Selaginella (Fig. 2d,e).

Trophophylls, where preserved, are dimorphic and arranged in
four rows; two rows of smaller dorsal leaves and two rows of larger
ventral leaves (e.g. Fig. 1f). Strobili are tetrastichous (i.e. sporo-
phylls arranged in four rows) and isophyllous (i.e. with monomor-
phic sporophylls) in eight of the fossil morphologies (Fig. 1g–n),
but anisophyllous (i.e. bilateral strobili with dimorphic sporo-
phylls) in the others (Fig. 1a–f). Whenever trophophylls are
preserved, the bilateral strobili are evidently resupinate. Based on
the presence of bilateral strobili, six of the fossils (Fig. 1a–f) can be
assigned confidently to the extant subgenus Stachygynandrum
(Weststrand & Korall, 2016b; see high magnification annotated
images of specimens confidently assigned to subgenus
Stachygynandrum in Figs S1, S2).

The fossil morphologies are distinguished in characteristics that
are also used in the discrimination of extant species, including: (1)
strobilus size; (2) size and shape of sporophylls and trophophylls
(including axillary leaves); (3) either monomorphic or dimorphic
sporophylls; (4) presence or absence and size of marginal teeth in
sporophylls and trophophylls; (5) presence or absence and length of
cilia at sporophyll and trophophyllmargins; (6) presence or absence
on sporophylls of a keel and its dentation; and (7) the ornamen-
tation of the megaspores (for description and quantification of
these key characters in each of the specimens see Tables S2, S3). As
there is little variation of extant species in the combination of these
characters, we regard the fossil morphologies to represent extinct
species. Individual species descriptions will be presented in a
separate paper.

Evolutionary implications

Lycophytes originated in the Silurian (Morris et al., 2018) and
evolved to become the dominant floral elements of the later

Paleozoic (DiMichele et al., 2001).While the initial diversification
of the lycophytes occurred during theDevonian andCarboniferous
(Kenrick&Crane, 1997;Morris et al., 2018), much of their extant
diversity has been suggested to have originated considerably later.
Apart from the early divergences in the Lycopodiopsida in the Late
Triassic, most extant lineages are supposed to have diversified
during theCretaceous (Klaus et al., 2017; Pereira et al., 2017; Testo
et al., 2018), coinciding with the rise of modern fern and
angiosperm lineages (Schneider et al., 2004; Schuettpelz & Pryer,
2009; Barba-Montoya et al., 2018; Morris et al., 2018).

Our newly discovered fossils support the notion of a Cretaceous
diversification also for Selaginella, and suggest that the genus has
been hyperdiverse since at least this period of geological time. The
Burmese amber inclusions provide evidence of at least 14 species of
Selaginella that occurred in the source area of the amber.Moreover,
six of these taxa represent the first compelling fossils of members of
the extant subgenus Stachygynandrum. However, the diversity of
Selaginella in the amber source forests probably was still higher,
taking into account that not all species of an ecosystem with
resinous trees become enclosed in resin outpourings. Furthermore,
much of the resin may not have survived processes of erosion,
transport and re-deposition and not all amber pieces are eventually
found and made available for study. Reports of marine isopods,
ostracods, and even a juvenile ammonite in this amber (Xing et al.,
2018; Yu et al., 2019) suggest a near-coastal lowland area as a source
of Kachin amber, and a rich fossil flora of ferns, liverworts and
mosses indicates that high humidity prevailed in the tropical
Burmese amber forest (Heden€as et al., 2014;Heinrichs et al., 2018;
Regalado et al., 2019).

Likewise, most extant species of Selaginella occur in primary
tropical moist forests (Korall &Kenrick, 2002). For instance,more
than 75%of the nearly 300 species inhabiting theNeotropics thrive
in humid forests (Alston, 1952; Mickel & Smith, 2004; Hirai,
2015; Smith&Kessler, 2018). Similarly, the majority of the c. 200
South-East Asian Selaginella species grows in lowland to mid-
montane primary and secondary forests (Camus, 1997; de Winter
& Jansen, 2003). About half of the African species are also
inhabitants of humid forests (Quansah, 1986; Roux, 2009). These
available numbers are for larger areas, rather than particular forest
types in narrower regions. Extant autochthonous Selaginella species
are characterised by a clear pattern of endemism by biogeographic
region. There is virtually no example of a pantropical or
cosmopolitan species in extant tropical Selaginella. In contrast to
the rather continental fern flora of the West Indies, for example,
only five of the 37 Selaginella species from these islands also occur in
mainland tropical America, thus reflecting more than 80%
endemism. One likely cause for this notable level of endemism is
the limited dispersal capacity of megaspores. The megaspores (as
well as possibly fragments of leafy shoots) are large and relatively
heavy, and hence not likely to be transported far by wind.

Confirmed species numbers for narrower regions, if available, are
much lower. For example, local diversity in South-East Asia ranges
between seven and 14 species. Ten species of Selaginella have been
counted in the lowland rainforest of Khao Nan National Park that
is said to harbour the highest diversity of free-sporing vascular
plants in Thailand (Boonkerd et al., 2008); 11 species have been

Fig. 2 Characteristics justifying assignment of the Burmese amber inclusions
to Selaginella. (a) Slightly oblique section exposed at the amber surface,
showing central stele and several trabeculae connecting stele and outer
tissue. The void is filled by amber (GZG.BST.21999). (b) Ventral trophophyll
with ligule (arrowhead, GZG.BST.21997). (c) Rhizophore (arrowhead,
PB23161). (d) Megaspore (GZG.BST.21966). (e) Microspores of the same
specimen (GZG.BST.21966). Bars: (b, c), 200 µm; (a, d), 100 µm; (e), 20 µm.
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documented in two gradients in northern and northwestern
Myanmar (Khine et al., 2017); 12 species have been recorded along
a transect in Java (Setyawan et al., 2016); 12 species in Seram and
Ambon, Moluccas (Kato, 1988); seven species in a karst forest of
Bohol Island, the Philippines (Barcelona et al., 2006); and Bautista
et al. (2018) collected 22 species in the mountains of Mindanao
Island, the Philippines, but no more than 14 species were found in
any individual mountain area. These extant species numbers from
different tropical regions show that, in a world with hundreds of
Selaginella species, the local number of species in an ecosystem type
or biome compares well with the number of taxa recorded for
Burmese amber.

Burmese amber opens a window into the Cretaceous Terrestrial
Revolution (KTR) 125 to 80 Ma (Lloyd et al., 2008; Benton,
2010; Liu et al., 2018), when angiosperms rose to ecological
dominance, and terrestrial biodiversity of macroscopic species
exceeded that in the sea (Vermeij&Grosberg, 2010). The explosive
radiation of angiosperms during this period of time probably
interacted with the diversification of key elements of the modern
biosphere (Dilcher, 2000; Meredith et al., 2011; Barba-Montoya
et al., 2018). New ecological niches emerged and, in turn, triggered
further diversification of other plant groups such as the core of
polypod ferns (Schneider et al., 2004) and epiphytic liverworts
(Feldberg et al., 2014), as well as insects such as bees, lepidopterans
andbeetles (Grimaldi, 1999;Misof et al., 2014;Zhang et al., 2018).
Apart from the co-evolution of angiosperms and insects, much of
the increasing diversity in the KTR is seen in the light of a sustained
increase in humidity in angiosperm-dominated forests, as a
consequence of significantly increasing evaporation from
angiosperm leaves (Boyce et al., 2010). The highly diverse
arthropod fauna preserved in Burmese amber (Ross, 2019) is
another proxy indicator of the presence of numerous different
niches andmicro-environments in the Burmese amber source area.
Spatial heterogeneity (e.g.micro-topographical gradients) in extant
tropical forests is a major reason for high species numbers (Wright,
2002), and was perhaps also a driving force in the diversification of
Selaginella within the Burmese amber forest.

High substitution rates and rate heterogeneity were reported to
occur in Selaginella (Korall & Kenrick, 2004). It has been argued
that land plant clades with higher background substitution rates
may undergo successful diversification under new conditions.
These clades are therefore more likely to survive in rapidly
changing or novel environments, in spite of the fact that they
otherwise are more susceptible to the various pressures that cause
extinction because of their relatively higher levels of mutational
genetic load (Lancaster, 2010). Increase in speciation and a
decrease in extinction, as well as robustness and adaptability were
discussed as reasons for higher ‘node density’ (diversity) in
Selaginella (Klaus et al., 2017). The high Cretaceous species
diversity is suggestive of a steadily high speciation rate for
Selaginella species, rather than a lower extinction rate and,
consequently, a steady turnover of species (Banks et al., 2011;
Baniaga et al., 2016).

The presence of at least 14 distinct morphologies demonstrates
that species diversity in Selaginellawas high in the mid-Cretaceous.
We therefore suggest that Selaginella was hyperdiverse already 100

Ma, possibly even comprising hundreds of species.Discovery of the
first fossils of representatives of the subgenus Stachygynandrum
confirms that this lineage dates back to at least the Albian-
Cenomanian, and six distinct amber-preserved morphologies of
this subgenus indicate that Stachygynandrum had already then risen
to dominate Selaginella diversity. The combination of diverse
niches and favourable humid tropical climate, together with the
adaptability and high substitution rates of Selaginella, may have
triggered the high species number recorded here for the first time
for the mid-Cretaceous.
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