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Low morphological disparity and  
decelerated rate of limb size evolution  
close to the origin of birds

Min Wang       & Zhonghe Zhou

The origin of birds from theropod dinosaurs involves many changes in 
musculoskeletal anatomy and epidermal structures, including multiple 
instances of convergence and homology-related traits that contribute to 
the refinement of flight capability. Changes in limb sizes and proportions 
are important for locomotion (for example, the forelimb for bird flight); 
thus, understanding these patterns is central to investigating the transition 
from terrestrial to volant theropods. Here we analyse the patterns of 
morphological disparity and the evolutionary rate of appendicular limbs 
along avialan stem lineages using phylogenetic comparative approaches. 
Contrary to the traditional wisdom that an evolutionary innovation like 
flight would promote and accelerate evolvability, our results show a shift to 
low disparity and decelerated rate near the origin of avialans that is largely 
ascribed to the evolutionarily constrained forelimb. These results suggest 
that natural selection shaped patterns of limb evolution close to the origin of 
avialans in a way that may reflect the winged forelimb ‘blueprint’ associated 
with powered flight.

The assembly of the volant bird body plan from the ancestral bulky 
dinosaurian condition is an enduring topic of evolutionary biology, 
encompassing some of the most extensive morphological changes 
pertaining to powered flight1–4. Size miniaturization, forelimb elonga-
tion and tail reduction, along with other skeletal modifications, have 
been hotly discussed, with competing scenarios explaining the modes 
and patterns of evolutionary origins of the characteristic avialan body 
plan4–8. However, our understanding about the morphological evo-
lution and phylogeny close to the origin of the Avialae and powered 
flight has been fundamentally refined with newly discovered fossils 
since those studies. In addition, previous body size-centric analyses 
may have overlooked local changes5,6,9–11; the heterogenous changes 
within and between the forelimb and hindlimb are essential to decipher 
clade-specific evolutionary patterns. Therefore, an updated study with 
larger taxonomic samplings is needed to gain fresh insights into this 
evolutionary transition and test previous hypotheses. In this study, 
we used phylogenetic comparative methods to quantify the morpho-
logical disparity of limb proportions and estimate the branch-specific 
and clade-specific evolutionary rate leading to the acquisition of the 

avialan body plan. This study aimed to address the following questions: 
How and when did the typical avialan-like limb proportions appear? 
Did the forelimb and hindlimb respond differently to the selective 
pressures associated with ecological shifts? Did powered flight as an 
evolutionary innovation trigger morphological disparity and acceler-
ate evolutionary rate?

Results
Morphological variations
The results of phylogenetic principal component analysis (PCA) using 
all limb measurements show that non-avialan theropods occupied a 
larger morphospace than that of early avialans (Fig. 1a,b and Extended 
Data Fig. 1). This result is robust to different phylogenetic hypotheses 
(Supplementary Figs. 1–14). Principal component 1 (PC 1) correlates 
negatively with all limbs with approximately equal eigenvector coef-
ficients (Supplementary Tables 1 and 2), indicating that it describes 
the overall elongation of limbs (related to body size). PC2 corresponds 
to the elongation of the forelimb relative to the hindlimb; differences 
along this axis distinguish avialans from non-paravian theropods, with 
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Fig. 1 | Morphological disparity of appendicular elements of Mesozoic 
theropods. a,b, Phylogenetic morphospace of the first three PCs of both 
forelimb and hindlimb elements (a,b) (red circles: avialans; green circles: 
non-avialan paravians; blue circles: non-paravian theropods). c, Changes in 
PC2 across a time-calibrated theropod phylogeny (see Extended Data Fig. 1 for 
the results of PCs 1 and 3). d, Comparison of morphological disparity among 
subgroups of Mesozoic theropods. (The boxes represent the median and the first 

and third quartiles of morphological disparity; n = 109 species.) Morphological 
disparity was compared using a Welch’s t-test for statistical significance (two-
sided ****P < 0.05). Taxa placed near the edge of the morphospace are labelled 
(the results showing the full names of taxa are shown in the figures in the Open 
Science Framework (OSF)). The interpretative line drawings of the forelimb and 
hindlimb denote the changes along the principal axes.
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non-avialan paravians in the intermediate position. Mapped changes 
of PC2 across the theropod phylogeny exhibit a clear trend of forelimb 
elongation along the line to avialans (Fig. 1c), reinforcing the hypothesis 
that drastic elongation of the forelimb took place close the origin of 
the Avialae6,12. PC3 mainly reflects the elongation of the metacarpal 
bone relative to the humerus and ulna. Avialans are closely packed 
and are overwhelmed by the distribution of non-avialan theropods 
along this axis, attesting to the autapomorphic forelimb configurations 
seen in scansoriopterygids and alvarezsaurids12,13. The permutational 
multivariate analysis of variance (PERMANOVA) tests show that avi-
alans and non-avialan paravians are statistically separated from each 
other in morphospace (Supplementary Table 3). Similar patterns were 
recovered using conventional PCA without accounting for phylogeny 
and body size (Supplementary Fig. 15 and Supplementary Table 4).

We further analysed the forelimb and hindlimb separately. The 
results of the phylogenetic PCA of the forelimb showed that PC1 cor-
responds to the overall size of the forelimb, and that avialans are sepa-
rated from the larger non-avialan forms (Supplementary Table 5). 
PC2 describes the elongation of the metacarpal bones relative to the 
proximal elements. It is worth noting that avialan and non-avialan 
theropods are clustered along this axis (Fig. 2a and Extended Data  
Fig. 2), indicating that the proportion of metacarpal bone in the 
forelimb is constrained, rather than differentiated substantially in 
response to diverse functional demands among groups (for example, 
prey capture, flight). However, several non-avialan theropods con-
vergently evolved highly abbreviated metacarpal bones, including 
scansoriopterygids and ceratosaurs. The short metacarpal in scanso-
riopterygids may be related to the membranous wing attachment12; 
however, for ceratosaurs it probably reflects reduction given the lim-
ited function of the manus14. PC3 describes the elongation of the ulna 
relative to the humerus. Avialans and non-avialan paravians are mixed 
along this axis, and they are separated from non-paravian theropods  
(Fig. 2a and Extended Data Fig. 3). The PERMANOVA tests show that 
avialans and non-avialan paravians are both statistically separated 
from non-paravian theropods in the forelimb morphospace (P < 0.05; 
Supplementary Table 3).

The results of the phylogenetic PCA of the hindlimb show that 
avialans, non-avialan paravians and non-paravian theropods overlap 
substantially in morphospace (Fig. 2b and Extended Data Fig. 3), sug-
gesting that the hindlimb proportions are evolutionarily conservative 
(contrary to ref. 7). This is somewhat counterintuitive given that the 
body plan changes substantially (for example, tail reduction and func-
tional decoupling from the hindlimb) and that the locomotion shifts 
from hip-based in non-avialan theropods to knee-based in early diverg-
ing avialans1,15–17. The lack of separation in hindlimb morphospace 
suggests that limb proportion alone cannot explain the functional 
diversification of the hindlimb among avialan and non-avialan thero-
pods7. The PERMANOVA tests recovered statistically significant differ-
ences in each pairwise comparisons but not in non-avialan paravians 
and non-paravian theropods (Supplementary Table 3).

Pattern of morphological disparity
Disparity analyses of all limbs showed that non-paravian theropods, 
non-avian paravians and avialans are statistically different from one 
another in all disparity metrics (P < 0.05; Supplementary Tables 6–8). 
Non-paravian theropods are more disparate than non-avian paravians, 
regardless of the disparity metric choice, whereas early avialans are the 
least disparate, although contributing more taxa to the dataset (Fig. 1d). 
The marked discrepancy of disparity among these groups still exists 
when only the forelimb is analysed, but that gap is greatly diminished 
when only the hindlimb is investigated (Fig. 2c,d). Rarefaction analyses 
showed that these results are not strongly affected by sampling bias 
(Extended Data Fig. 4). Comparable results are obtained using different 
phylogenetic assumptions (Supplementary Figs. 1–14), as well as con-
ventional PCA (Supplementary Figs. 15–17 and Supplementary Table 9).

Variations of two functional indices
Although limb measurements were size-corrected before the phylo-
genetic PCA, morphological variations are still dominated by uniform 
changes of limbs (with PC1 correlating nearly equally with all limbs), 
suggesting that body size miniaturization, the pronounced change5,9, 
deeply shaped the appendicular elements along the stem avialan line. 
Therefore, local variations that respond directly to diverse ecologi-
cal and functional demands are presumably shadowed by body size 
changes. To circumvent this issue, we analysed two size-independent 
functional morphological indices (brachial index (BI) and crural index 
(CI)) to investigate the focal changes in the forelimb and hindlimb, 
respectively (see the Methods for the different calculations of CI for 
avialan and non-avialan taxa). Avialans are separated from non-avialan 
theropods in the BI–CI morphospace with phylogeny considered or not, 
which is most pronounced along the CI axis (Fig. 3a and Extended Data 
Fig. 5a). Avialans and non-avialan paravians overlap to some degree on 
the BI axis, and they are spaced from non-paravian theropods, which 
is consistent with the results using the limb measurements. A notable 
increase in BI occurs along the branch subtending to the Avialae, but 
an opposite trend is recovered for the CI (Fig. 3b,c). The results vividly 
capture how the contrasting locomotion adaptations from cursoriality 
to powered flight have guided the changes in forelimb and hindlimb. 
When the CI is calculated as the length ratio between the tibiotarsus 
and femur for all avialan and non-avialan taxa, avialan taxa are not 
widely spaced from non-avialan theropods in morphospace (Supple-
mentary Fig. 18).

Avialans are statistically less disparate than non-avialan theropods 
in the BI and CI, and avialans become more disparate in the CI when this 
index is calculated the same way across taxa (Extended Data Fig. 5b,c, 
Supplementary Fig. 9 and Supplementary Table 10). The proportion 
of wing bones represents a mechanical-level system, whereas BI cor-
relates with different flight modes among extant volant taxa18,19. The low 
variation of the BI among avialans probably reflects strong selection 
in favour of wing bone proportions optimized for flight. Non-avialan 
paravians display greater CI variations than other groups; this may have 
resulted from conflicting and dual demands associated with the use of 
the hindlimb in locomotion (for example, running and manipulating 
prey) that is further intensified by their diverse experimentations with 
volant behaviour (for example, climbing, perching)7,12,20.

Evolutionary rate
The evolutionary rate of all limbs (PCs 1–4 as the input data) shows 
a general decreasing trend along the stem avialan line, with derived 
members of the ornithuromorphs and non-avialan paravians (for 
example, Oviraptorosauria and Scansoriopterygidae) exhibiting an 
accelerated rate (Fig. 4a). The results are robust to different phyloge-
netic hypotheses (Supplementary Figs. 4, 10 and 14). The evolutionary 
rate is statistically different among avialans, non-avialan paravians 
and non-paravian theropods (Extended Data Fig. 6a and Supplemen-
tary Figs. 4, 10 and 14). The rate of forelimb evolution shows a similar 
pattern; it exhibits a shift to a lower rate in the Avialae (Fig. 4b). The 
forelimb of non-avialan paravians evolved significantly faster than 
that of non-paravian theropods, whereas avialans showed the lowest 
rate (Extended Data Fig. 6b). Unlike the recovered evolutionary rate of 
all limbs and forelimbs, no distinct rate shift along the line to avialans 
was identified in the hindlimb (Fig. 4c). The rate is decreased in later 
diverging members of the Enantiornithes. In contrast, a previous study 
found a significantly high evolutionary rate of the hindlimb in avialans 
compared with non-avialan theropods, and a relatively slower rate 
in the forelimb7. However, the results cannot be directly compared 
because of different methodologies. For instance, body mass was not 
accounted for and the evolutionary rate was calculated for individual 
PC axes7 rather than analysed together as in this study; also, the larger 
sample size in the present study may have also impacted the results. 
Taken together, these results indicate that the distinct rate shift in 
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appendicular limb evolution in avialans is largely driven by deceler-
ated forelimb evolution.

The results of the BI analyses showed clade-specific evolutionary 
rates: accelerated rates seen in basal coelurosaurs and deinonychosau-
rians; relatively slower rates in other non-avialan theropods; and much 
slower rates in avialans (Fig. 5a, Extended Data Figs. 7 and 8 and Supple-
mentary Fig. 5). In contrast, the rate of CI evolution showed a different 
pattern in displaying roughly homogenous rates among non-avialan 
theropods, although the rate was notably decelerated in avialans  
(Fig. 5b, Extended Data Figs. 9 and 10 and Supplementary Fig. 6).

Discussion
Our study shows that changes in body plan along the avialan stem lin-
eages are characterized by a decrease in disparity and deceleration 
in rate of appendicular limb evolution (Figs. 1 and 2, Extended Data  
Figs. 1–4 and Supplementary Figs. 4–17). This pattern is largely driven by 
the forelimb, which exhibits constrained morphological variation and 
slow evolutionary rate close to the origin of the Avialae. With winged 
forelimbs, the early diverging avialans are separated from non-paravian 
theropods in morphospace, with non-avialan paravians as intermedi-
ates (Fig. 2a, Extended Data Fig. 2 and Supplementary Figs. 1, 7, 11 and 15).  
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Fig. 2 | Patterns of morphological disparity in the forelimb and hindlimb 
among Mesozoic theropods. a,b, Phylogenetic morphospace of PC2 and 
PC3 of the forelimb (a) and hindlimb (b) (see Extended Data Figs. 2 and 3 for 
additional results). c,d, Comparison of morphological disparity in the forelimb 
(c) and hindlimb (d) among three subgroups of Mesozoic theropods. (The boxes 
represent the median and the first and third quartiles of morphological disparity; 
n = 109 species.) Morphological disparity was compared using a Welch’s t-test 

for statistical significance (two-sided ****P < 0.05). The colour scheme is the 
same as in Fig. 1. The silhouette has been modified from the diagram created by 
the Cornell Lab of Ornithology (https://academy.allaboutbirds.org/features/
birdanatomy/). Taxa placed near the edge of the morphospace are labelled (the 
results showing the full names of taxa are shown in the figures in the OSF). The 
interpretative line drawings of the forelimb and hindlimb denote the changes 
along the principal axes.
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The extensive forelimb changes and accompanying flight capability 
would have accelerated the evolutionary rate and increased dispar-
ity by opening new niches, a common wisdom regarding adaptative 
radiation driven by evolutionary novelty21–23. However, the opposite 
pattern was observed in this study. Both the morphological disparity 
and evolutionary rate of early diverging avialans are statistically sig-
nificantly lower than those of non-avialan theropods (Figs. 2c and 4b, 
Extended Data Figs. 4 and 6 and Supplementary Figs. 1, 2, 7, 8, 11, 12, 
15 and 16). The longer evolutionary history and presumably the accu-
mulated morphological changes could increase disparity of non-avian 
theropods but also ‘dilute’ their evolutionary rate given the increased 
branch length. For early diverging avialans, that sampling issue may 
have the opposite effect (lowering disparity and increasing evolution-
ary rate). Therefore, the recovered low disparity and decelerated rate 
of morphological evolution of avialans cannot be simply ascribed to 
sampling bias, and other factors should be considered.

These results also suggest that the forelimb underwent consider-
able modifications at the cost of its disparity, whereas the hindlimb was 
evolutionarily conservative well into the diversification of Mesozoic 
avialans, exhibiting a ‘first forelimb and then hindlimb’ pattern along 
the phylogenetic lines towards avialans. The relatively small difference 
between avialans and non-avialan paravians in disparity and approxi-
mation in forelimb morphospace suggest that the bony ‘blueprint’ of a 
typical bird wing was formed before the origin of avialans, representing 
exaptation for flight. Our study complements the results using discrete 
morphological characters used in previous analyses24.

The continuously discovered feathered non-avialan theropods 
suggest that some taxa exhibit morphological modifications related 

to volant behaviour in parallel to avialan powered flight, such as the 
hindlimb flight feathers in dromaeosaurids and the membranous wings 
in scansoriopterygids12,20,24. Indeed, we discovered an accelerated evo-
lutionary rate along the branches subtending to these taxa, particularly 
the scansoriopterygids (Fig. 4 and Supplementary Figs. 1–14). These 
taxa are also placed near the edge of the morphospace of their group 
(Figs. 1 and 2), further demonstrating the impact of powered flight on 
body plan along the stem avialan line.

Comparative analyses of the forelimb show that avialans are dis-
tinguishable from other non-avialan theropods in the relative length 
of the metacarpal and BI (Figs. 2a and 3a and Extended Data Figs. 2 and 
5). The proportions of forelimb elements strictly impact the functional 
performance of avialans, from wing folding when not in use to elabo-
rated movement during flight3,18,25. The most obvious condition is that 
most volant birds have an ulna that is longer than the humerus18. This 
basic bony blueprint required for powered flight probably restricts 
the morphospace that can be realised by early diverging avialans, 
resulting in decreased disparity and decelerated evolutionary rate7. 
Although early avialans could fly, derived features that are crucial to 
refine manoeuvrability in the air are absent in those early members, 
including pneumaticity of the proximal humerus, a sulcus for guid-
ing flight muscle tendons and quill knobs for attaching secondary 
remiges20,26,27. These and other flight-relevant musculoskeletal features 
seen in crown groups most probably expand the morphospace by cir-
cumventing the constraints of limb proportions, ultimately contribut-
ing to the very large forelimb disparity present in extant birds7,28–30. The 
PERMANOVA tests show that avialans and non-avialan paravians are not 
statistically separated from each other in the forelimb morphospace 
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but they are both statistically separated from non-paravian theropods 
in the forelimb morphospace. For the hindlimb, statistically significant 
separations, found in each pairwise comparison but not non-avialan 
paravians and non-paravian theropods, suggest that the avialan-like 
limb proportions were established earlier in the forelimb than in the 
hindlimb in theropod history, supporting the ‘pectoral early–pelvic 
late’ hypothesis31–33. Taken together, the recovered patterns of dispar-
ity and rate of appendicular limb evolution demonstrate how the early 
avialan body plan has been shaped deeply by natural selection driven 
by powered flight.

Methods
Taxonomic sampling and morphological traits
To investigate changes in body shape close to the origin of the Avialae, 
we compiled linear measurements of limb bones across the whole spec-
trum of the Mesozoic theropod phylogeny, including early diverging 
avialans. The length measurements—humerus, ulna and radius, meta-
carpal II (carpometacarpus bone for avialans), femur, tibia (tibiotarsus 
for avialans) and metatarsal III (tarsometatarsus bone for avialans)—
were obtained by direct measurement combined with published source 
data (Supplementary Table 1). These limb bones were chosen because 
they are generally well preserved and are often reported in studies, 
making it feasible to trace their changes over large temporal and phylo-
genetic scales. In addition, they have been frequently used to infer the 
ecology of animals (particularly fossil taxa) because of their functional 
and ecological relevance15,17,28,30,34. We omitted specimens that did not 
preserve complete length for all six limb bones, given the controversy 
regarding scaling relationships of limb size. All sampled specimens 
were sub-adults or adults based on the well-ossified periosteal surface 
of preserved elements, fusion degree of compound bones and bone his-
tology whenever this information was available. The dataset consisted 
of 109 taxa (avialans n = 55, non-avialan paravians n = 17, non-paravian 
theropods n = 37), encompassing nearly all well-recognized taxa, par-
ticularly those lineages that are phylogenetically close to the origins of 
powered flight and avialans. To our knowledge, it represents the most 
comprehensive dataset of this kind that focuses on limb bone changes 
across the non-avialan theropod–bird transition, for example, 92 taxa 
(including 8 invalid taxa) that had six complete limb bones in ref. 7 and 
39 taxa in ref. 8.

Phylogenetic inference
Although our understanding about the interrelationships between 
non-avialan theropods and early diverging avialans, respectively, has 
been advanced by recent studies20,26,35–37, a unified study explicitly 
focusing on this broad phylogeny with sufficient taxonomic representa-
tions is lacking. Therefore, an informal supertree was assembled using 
combined information from recent phylogenetic studies of avialan 
and non-avialan theropods13,35,37–39. To account for taxa with competing 
phylogenetic placements in different hypotheses, especially taxa close 
to the origin of avialans whose phylogenetic positions have long been 
debated, such as Anchiornis and the scansoriopterygids: Anchiornis 
was assigned to avialans or troodontids2,20,24,35 and scansoriopterygids 
were considered as a sister clade uniting avialans and deinonychus, or 
as sister clade to oviraptorans12,35,40. Given that these taxa are close to 
the node of the Avialae (the focus of this study), we manually assembled 
four informal supertrees that explicitly account for the uncertainty 
of those taxa. Specifically, supertree I treats Anchiornis as avialan and 
the scansoriopterygids as a sister clade that units avialan, troodontids 
and dromaeosaurids; supertree II treats Anchiornis as troodontids and 
scansoriopterygids as in supertree I; supertree III treats Anchiornis as 
avialan and scansoriopterygids as a sister clade to oviraptorans; and 
super tree IV treats Anchiornis as troodontid and scansoriopterygids 
as in supertree IV. As for other taxa with competing phylogenetic posi-
tions among studies, branches subtending to these taxa were collapsed 
as polytomies. Our main conclusions are not strongly impacted by 

phylogenetic assumptions; thus, only the results derived from super-
tree I is described in the main text (see the Supplementary Information 
for results derived from other phylogenies). Because the downstream 
comparative analyses methodologically require fully resolved trees, 
polytomies were randomly resolved using the multi2di function in 
the R package ape41. To account for phylogenetic uncertainty, the four 
primary supertrees were each randomly resolved 20 times, resulting 
in 80 phylogenetic trees that were subjected to the following analy-
ses. The fully resolved supertree was time-calibrated using tip dates 
bracketed by the first and last appearance datum of the geological 
stages or epochs in which a given taxon was collected. We applied both 
the ‘minimum branch length’ (mbl; here, one million years) and ‘equal’ 
methods to calibrate the tree using the timePaleoPhy function in the 
R package paleotree42. The dated supertree was fed into subsequent 
comparative analyses as the phylogenetic backbone (Extended Data 
Figs. 1–10 and Supplementary Figs. 1–23; see other results at the OSF). 
The different tree-calibrating methods did not alter our conclusion; 
thus, the results from the mbl method are reported in the main text 
(results derived from the ‘equal’ method are available at the OSF). Other 
time-calibrating methods are available that have now being applied 
to palaeontology, such as cal3 method and the fossilized birth–death 
model within a Bayesian framework43–46. However, these sophisticated 
methods may not be applicable to our dataset and discrete morphologi-
cal characters because they require previous parameters (for example, 
sampling estimates, origination and extinction rates) that are only 
available for groups whose taxa have a true temporal range47,48, whereas 
most of the known Mesozoic theropods including avialans are known 
from either a single specimen or a limited geological area.

Patterns of morphological disparity
To quantify and compare morphological variation along the line to 
early diverging avialans, we used phylogenetic PCA to explore patterns 
and modes of limb proportion evolution among taxa included in the 
dataset. Traditional PCA analyses (without accounting for phylogeny 
and body mass) were also performed for comparison. The length meas-
urements were log-transformed before the analyses to normalize the 
distribution49. The species included exhibited approximately 100-fold 
size differences; thus, we performed a phylogenetic generalized square 
regression of the log-transformed limb data against body mass using 
the phyl.resid function in the R package phytools to account for the 
size-dependent limb measurements50–52. Body mass was estimated 
using an empirical equation derived from living bipedal tetrapods9,53, 
which is based on the mediolateral/anteroposterior width of the femo-
ral shaft9. The resulting size-corrected length residues were subjected 
to phylogenetic PCA to account for non-independence in trait values 
between species because of shared history54 using the phyl.pca func-
tion in the R package phytools51. Phylogenetic PCA was applied to 
forelimb and hindlimb together and separately to analyse changes 
in the whole body and focal regions that potentially exhibit differ-
ent patterns in response to major shifts in locomotion and habitats 
(for example, cursoriality, flight, arboreal species) (Supplementary 
Tables 2, 4 and 5). To visualize the evolutionary path of limb proportion 
towards early branching avialans, a phylogenetic morphospace was 
constructed using PCs.

We quantified and compared the disparity in limb proportion 
among major groups by assessing each specie’s PC scores. Three widely 
used disparity matrices were calculated: the sum of ranges and vari-
ances, and the median distance from centroids55,56. Ranges describe 
the distribution of morphological changes in sampled species and are 
relatively free from the bias caused by the splitting of specimens. Vari-
ances capture the average dissimilarity among specimens and thus are 
relatively independent from sample size bias56. The median distance 
from centroids captures the median Euclidean distance of individual 
specimens from the centroid or their group in morphospace occupa-
tion55. For intergroup comparisons, we subdivided taxa into three major 
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groups: Avialae; non-avialan Paraves; and non-paravian theropods. 
The Avialae were further divided into non-ornithothoracine Avialae, 
Enantiornithes and Ornithuromorpha. Given the uneven species num-
bers among these groups, rarefaction analyses were performed to 
determine to what extent morphological disparity is affected by sam-
pling bias. The disparity analyses were performed using the R package 
disRity57. A Welch’s t-test was used to test whether the disparity matrices 
were statistically different among major groups using the test.dispRity 
function in the R package disRity57. To test whether some groups were 
statistically distinct from other groups in morphospace occupation, 
a non-parametric multivariate analysis of variance (PERMANOVA) 
test was performed using the adonis function of the R package vegan 
(Supplementary Tables 3 and 9)58.

Quantitative functional indices
In addition to limb measurements, two commonly used functional 
indices were analysed: the BI and CI. The BI (ulna and humerus 
length) provides an accurate and reliable way of predicting external 
wing morphology, and thus correlates with different flight models in 
crown birds18,19,59. This ratio is less than 1.0 in most flightless birds and 
non-avialan theropods17. Few attempts have been made to quantify its 
changes across the theropod phylogeny, particularly near the origin of 
powered flight. The CI is widely used to assess the terrestrial locomo-
tion performance of tetrapods (for example, speed, stride) and other 
aspects of ecological adaptations, such as prey capture and stability 
during perching34,60,61. For non-avialan theropods, the CI is calculated 
as the length ratio between the tibia and femur, whereas for avialans, it 
is calculated as the length ratio between the tarsometatarsus and tibio-
tarsus because of the nearly horizontally oriented femur and knee-based 
locomotion in avialans16,17. We also calculated the CI as the length ratio 
between the tibia and femur for all avialan and non-avialan theropods for 
comparison. The two indices, which are size-independent, were fed into 
comparative analyses to explore their evolutionary changes and inter-
group disparity comparisons, following the same steps outlined above.

Rates of morphological evolution
We quantified the evolutionary rate of limb proportion across 
the phylogeny within a Bayesian framework using the BayesTraits 
v.4 tool (http://www.evolution.reading.ac.uk/BayesTraitsV4.0.1/
BayesTraitsV4.0.1.html). PC scores from the PC axes that account 
for more than 95% of the variances were used as the input data for all 
limbs, forelimb and hindlimb analyses, respectively. For the BI and 
CI analyses, raw values were used. We applied a variable rate model 
and reversible-jump Markov chain Monte Carlo method to estimate 
branch-specific and clade-specific evolutionary rates, as well as the 
location, probability and magnitude of rate shifts. Two independent 
runs were performed, each with 100 million generations for limb data 
and 50 million generations for CI and BI, respectively (to get conver-
gence and a >200 effective sample size). The first 25% of samples were 
discarded as burn-in; every 1,000 generations were sampled. A step-
ping stone sampler algorithm was used to estimate marginal likelihood, 
with a setting of 500 stones for every 5,000 generations. Chain conver-
gence and effective sample size were determined using the gelman.diag 
and effectiveSize functions in the R package coda (Supplementary Figs. 
19–23 and Supplementary Table 11)62. The branch-specific evolutionary 
rate and posterior probability of rate shift from BayesTraits v.4 were 
extracted using the R package btrtools (https://github.com/hferg/
BTRTools). The average evolutionary rate was plotted across the tree 
using the protocol outlined in ref. 63. The evolutionary rates among 
subdivided groups were compared using a mean rate scalar followed 
by a non-parametric t-test for statistical significance.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Supplementary material is available online. The R code, raw data and 
results derived from the phylogeny scaled using the ‘equal’ method, and 
the different phylogenetic hypotheses are available on the OSF (https://
osf.io/8n3wt/?view_only=753148d6a15f478e8fa027890b6b9bde).

Code availability
The R code used in the comparative analyses is archived and available 
on the OSF (https://osf.io/8n3wt/?view_only=753148d6a15f478e8fa0
27890b6b9bde).
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Extended Data Fig. 1 | Evolutionary changes of all appendicular elements across Mesozoic theropod phylogeny. The first and third principal components (PCs) 
derived from pPCA of all limbs are mapped on the time-calibrated tree. a, PC1 (=70.03% variances). b, PC3 (=6.7% variances).
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Extended Data Fig. 2 | Phylomorphospace of forelimb morphological disparity of Mesozoic theropods. The first three principal components (PCs) derived from 
pPCA of forelimb are used. a, Binary plot of PCs 1 and 2. b, Binary plot of PCs 1 and 3.
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Extended Data Fig. 3 | Phylomorphospace of hindlimb morphological disparity of Mesozoic theropods. The first three principal components (PCs) derived from 
pPCA of hindlimb are used. a, Binary plot of PCs 1 and 2. b, Binary plot of PCs 1 and 3.
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Extended Data Fig. 4 | Rarefaction of disparity curves of Mesozoic theropods showing that the results are not strongly affected by sampling bias. 
Morphological disparity is quantified using three metrices: a, sum of variances; b, median distance from centroid; c, and sum of ranges. The dark and light surfaces 
indicate the 50% and 95% confidence intervals, respectively.
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Extended Data Fig. 5 | Evolutionary changes of brachial (BI) and crural (CI) 
indices across Mesozoic theropod phylogeny. a, Phylomorphospace of BI and 
crural CI indices with phylogeny accounted. b, c, Comparison of disparity among 
three subgroups using standard deviations of BI (b) and CI (c), respectively  

(The boxes represent the median, the first and the third quartile of the 
morphological disparity; n = 109 species). Morphological disparity was 
compared using Welch’s t-test for statistical significance (****two-sided p-value 
threshold <0.05).
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Extended Data Fig. 6 | Comparison of evolutionary rate of subgroups of 
Mesozoic theropods. Evolutionary rates are significantly different in all pairwise 
comparisons. The mean rate scalar is the mean of the rate scalars calculated in the 
post-burn-in posterior distribution under the variable rate evolutionary model 

(The boxes represent the median, the first and the third quartile of the mean rate 
scalar; n = 109 species). a, All appendicular elements. b, Forelimb. c, Hindlimb. 
Evolutionary rate among subgroups were compared using a nonparametric t-test 
for statistical significance (****: p < 0.00005).
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Extended Data Fig. 7 | Evolutionary changes of brachial index across time-calibrated Mesozoic theropod tree.
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Extended Data Fig. 8 | Evolutionary changes of brachial index across 
Mesozoic theropod phylogeny. a, Branch specific evolutionary rates and rate 
shifts (Branch specific evolutionary rates are denoted by the color gradients. 
Posterior probabilities of rate shifts are indicated by the relative size of the 

grey triangles). b, Comparison of evolutionary rate of brachial index among 
subgroups (The boxes represent the median, the first and the third quartile of the 
mean rate scalar; n = 109 species). Evolutionary rates are significantly different in 
all pairwise comparisons except between Avialae and non-paravian theropods.
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Extended Data Fig. 9 | Evolutionary changes of crural index across time-calibrated Mesozoic theropod tree.
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Extended Data Fig. 10 | Evolutionary changes of crural index across Mesozoic 
theropod phylogeny. a, Branch specific evolutionary rates and rate shifts 
(Branch specific evolutionary rates are denoted by the color gradients. Posterior 
probabilities of rate shifts are indicated by the relative size of the grey triangles). 

b, Comparison of evolutionary rate of brachial index among subgroups  
(The boxes represent the median, the first and the third quartile of the mean 
rate scalar; n = 109 species). Evolutionary rates are significantly different in all 
pairwise comparisons.
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measurement in combined with published source data by the corresponding author Min Wang.
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