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CLIMATIC VARIATION AND THE OBLIQUITY

Xu Qingi
(Institute of Vertebrate Paleontology and Palecanthropology. Academia Sinica)

Abstract

‘There were three kinds of climatic variation in earth-history. The first kind is
the alternation of glaciation and nonglaciation with an average period of 200 to 300
million years. Glaciation or kryogene defiined as climate with ‘‘much ice’’, such as
Quaternary Glaciation, Permo-Carboniferous Glaciation and so on. While nonglaciation
or akryogene defined as climate with ‘‘a little ice’’, such as Mesozoic Era, during which
there was only a little ice in the world. From Mesozoic Era to Quaternary Glaciation
or during the Tertiary period the climatic variation included three characteristics: 1.
The annual range of temperature was gradually widened (Axelrod and Bailey, 1969).
2. The latitudinal temperature gradient was gradually increased (Figs. 1, 3). 3. The
mean annual temperature of the whole world dropped gradually (Figs. 1, 3). The first
characteristic is the most important for understanding the cause of such climatic var-
iation.

The second kind is the alternation of polytaxic and oligotaxic with an average
period of 32 million years. Polytaxic times of maximal diversity coincide with higher
and more uniform oceanic temperature, with continuous pelagic deposition and with
widespread marine anaerobism, eustatic sea-level rises, and heavier carbon isotope
values in marine calcareous organisms and organic matter. Pelagic communities reach
maximal complexity, expressed in numbers of taxa and in predator size. While oligo-
taxic episodes are characterized by lower marine temperature and sharper latitudinal;
and vertical temperature gradients, by interruptions of submarine sedimentation caused
by intensified current systems, by marine regression, by a lack of anaerobic marine
carbonate skeletons and organic compounds. Degradation of pelagic communities is
reflected by loss of large predators and lowered diversity; blooms of opportunistic
species oceur during these intervals. This oceanic cyecle appears to be linked to con-
tinental climates expressed in the paleobotanical record (Figs. 1,2,3) (Fischer and
Arthur, 1977).

Fischer and Arthur said correctly, ‘‘This alternation is not directly correlated with
plate tectonics and patterns of continental distribution.”” They pointed out further,
“‘The ultimate cause remaing unknown, bu the link with sea-level ossillations and
possible correlations with periodicity in magmatism suggest that it is internal to thie
earth, rather than tied to variations in solar or cosmic processes.”’ (Fischer and Arthur,
1977).

The third kind is the alternation of warm stage and cold stage with an average

period of 100,000 years during the Quaternary Glaciation. The isotopie record of deep-
sea cores provides the most accurate hitherto known information on Quaternary elima-

tes, unique in its continuity and global extent (Kukla, 1977).
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It is well known that the variations in the earth’s orbital elements (obliquity,
eccentricity and longitude of perihelion) can cause the redistribution of winter as well
‘as summer insolation at all latitudes. The incoming solar radiation was eomputed for
every 5° of latitudes from pole to pole over the last 2 million years by Vernekar (1972).
In order to understand the details of the machanism through which insolation
changes climate, we would like to point out: 1. We must consider the distribution of
winter as well as summer insolation. 2. We must not only consider the distribution of
insolation at 65°N, but also that at all latitudes. 3. As the earth is an entity, heat
has been transporting from the lower latitudes (< 35°) to the higher ones (> 35°),
therefore we must also consider the meridional heat transport. 4. When insolation
reaches the earth’s surface, it will be reduced by the albedo of the earth’s surface and
the reflective, absorptive and scattering of the earth’s atmosphere. The higher the
latitudes, the more the depletion. Therefore we must not only consider the variation
received at the top of the atmosphere, but also take notice of the factors mentioned
above. 5. We must not only examine separately the variation, of the radiant energy of
the entire winter or summer, but also observe separately the corresponding varia-
tion of‘te'mper‘ature of each. The energy(E) is related to temperature(8) by E=c6"

not a linear function. Considering the five factors mentioned above, we have drawn

cOnclusiops as follows: When ‘the obliquity inecreases from 0° to 30°, 1. the annual
range of temperature would be gradully widened; 2. the latitudinal tempera-

tire gradient would be gradully increased; and 3. as a result the mean annual tempera-.

tare of the whole world would drop gradually (Xu Qingi, 1980). The three points
are exactly 1dent1ca1 with the three characteristics of the climatie variation during
the Tertiary pemod or from Mesozoic Era to Quaternary Glaciation. Therefore the
variation of obliquity is the fundamental cause of the first kind of climatic variation.
So is the second one,

.The. fossils of dinosaurs and many species of pollen and spores were found in Yu-

kon, Canada (Rouse, 1972). During the late Cretaceous the loeality was at 75°N (Van

Valen, 1977), but it is about 66°N today as a result of continental drift. It is probable
that these species lived in the subtropical or warm temperate zone. Late Cretaceous
floras from Alaska and Siberia indicate that a moderately large area was so warm as
subtropical or warm temperate zone. All these areas were at highi latitudes during
the late Cretaceous according to all kinds of palaeogeographic maps (Samoilovich,
1967 ; Krassilov, 1975; Van Valen and Sloan, 1977). Paleotemperatures derived from
oxygen isotope ratios in clacite fossil skeletons (Figs. 1,3) show that during the late
Cretaceous the climate at high latitudes was also as warm as that of subtropical or
warm temperate zone (Fischer and Arthur,1977). If the obliquity had been about 23.5°
then, there would have been 97 continuous polar nights at 75°N as today. In such
conditions there would have been no sunlight at all during 97 continuous days. It is
well known that the sun is the single noteworthy source of heat for the earth’s atmo-
sphere, If there had been no sunlight at all during 97 continuous days, it is impos-
sible that the climate there could have been so warm as that of subtropical or warm
temperate zone. I am afraid both dinosaurs and plants of the late Cretaceous could not
have lived in such conditions. Only if the obliquity was quite small, such as about 15°,
was there no polar night at 75°N and could these facts mentioned above be explained

’h"a;.ﬂ:f -
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reasonably. These facts are conclusive evidence, demonstrating that the obliquity once
became quite small during the late Cretaceous. In Fig. 4 the obliquity is about 15°
during the late Cretaceous exactly.

According to the analysis in my previous paper, when the obliquity increases from
0° to 30°, the amount of summer insolation at 65°N would be greatly increased, while
that of the winter at 35°N would be gradually decreased. At the same time the mean
annual temperatre of the whole world would drop. gradually. Obviously the fall of
the mean annual temperature is in correspondence only with the decrease of the amount
of winter insolation at 35°N, and not with the increase of the amount of summer in-
solation at 65°N. As a matter of fact, during the pleistocene the curve of the distribu-
tion of winter insolation at 35°N is exactly identical with the paleotemperature curve
provided by Hays, Imbrie and Shackleton (1976). So are many other paleotemperature
curves from the deep-sea sediments. The curve in “Fig. 5 can tell you what period be-
longed to the eold stage; what period belonged to the warm stage; and in what period the
cold- (or warm) stage was colder or longer than the others; in what period the eold
(or warm) stage was poorly expressed. I now feel more confident than ever that the
fundamental cause of the third kind is the variations in the earth’s orbital elements.

The conclutions are that there were at least three type of variation of obliquity. 1.
Obliquity varied between 22.08° and 24.43°, with an average period of about 41,000 years
(Vernekar, 1977). It was the variations in the earth’s orbital elements (obliquity, eccent-
rieity and 10ngitude of perihelion) that caused the alternation of warm stage and cold
stage during Quaternary Glaciation. 2. Obliquity fluetuated with an amplititude of
about 5°—6° and with an average period of 32 million -years (Fig. 4). It is the
fundamental cause of the alternation of polytaxic and oligotaxic. 3. Obliquity flue-
tuated with an amplititude of about 10°—15° and with an average period of about
200 to 300 million years (Fig. 4). It is the fundamental cause of the alternation of
glaciation and nonglaciation. - The superposition of the thres fluctuations represents
the law of the variation of thé obliquity in earth-history,



